Aqueous Batteries with High-Energy Low-Cost Organic Anodes

Technology Overview

- Organic polymer anodes enable low-cost and stable aqueous batteries.
- 2. Materials cost < \$125 /kWh, cell energy density 100 Wh/kg, life > 1000 cycles.

O
$$+e^-, +Li^+$$
 OLi
R R' $-e^-, -Li^+$ R' R'

UH Aqueous Lithium-Ion Battery

TEAM:

Dr. Yan Yao, Assistant Professor, Univ of Houston 713.743.4432 yyao4@uh.edu
Jeff Xu, co-PI, Southwest Research Institute

Current Status

- 1. Organic polymers have been demonstrated as stable anode materials in aqueous batteries with specific capacities up to 350 mAh/g.
- 2. Further scale up cells to 2 Ah-level.
- Estimate cost for full cell and provide block diagram for polymer synthesis.
- Experts for fabrication of cylindrical/prismatic cells and estimation of polymer cost at large scale.

Project Statistics

Award Amount	\$0.96M
Award Timeline	Nov. 2013 – Aug. 2015
Next Stage Target	2 Ah-cell prototype
Collaborations Sought	

Needed: A High Energy & Stable Anode

Current art: Stability and high capacity (> 130 mAh/g) are not obtained simultaneously;

Very-high capacity (> 200 mAh/g) is not available.

Target: More than double the energy density from the current 60–70 Wh/kg to > 150

Wh/kg by introducing organic anodes.

Performance Characteristics of Organic Anodes

Capacity & Cycling Stability

Capacity retention is 93% after 1000 cycles, with stable capacity > 320 mAh/g.

Rate Capability

From C/2 to 20C, 82% of the capacity is retained.

Materials and Cells Scaled Up

Accomplishments

- We demonstrated that low-cost organic polymers could function as stable anode materials in aqueous batteries.
- We designed, synthesized, and tested over 12 polymers; among them 3
 polymers demonstrated excellent capacity, rate capability, stability, and lowtemperature performance.
- We scaled up the production of polymers (kilogram-scale) fabricated prototype cells (20-70 mAh) to demonstrate the proof-of-concept.

Lessons Learned

 Polymer-based anodes demonstrate significantly higher capacity, longer cycle life, and better high-rate and low-temperature performance than their inorganic counterparts in aqueous batteries.

Collaborations

- Next-stage task is to further increase cell potential and scale up cells to 2 Ahlevel.
- Looking for collaboration in fabrication cylindrical/prismatic cells.

